Modified Group Projectors: Tight Binding Method
نویسنده
چکیده
Modified group projector technique for induced representations is a powerful tool for calculation and symmetry quantum numbers assignation of a tight binding Hamiltonian energy bands of crystals. Namely, the induced type structure of such a Hamiltonian enables efficient application of the procedure: only the interior representations of the orbit stabilizers are to be considered. Then the generalized Bloch eigen functions are obtained naturally by the expansion to the whole state space. The method is applied to the electronic π-bands of the single wall nanotubes: together with dispersion relations, their complete symmetry assignation by the full symmetry (line) groups and the corresponding symmetry-adapted eigen function are found. PACS numbers: 02.20.a, 71.15.Fv, 73.61.Tm, 73.20.Dx Submitted to: J. Phys. A: Math. Gen.
منابع مشابه
Maximally Efficient Symmetry Group Founded Diagonalization of Biophysical and Quantum Chemical Hamiltonians
We show that modified Wigner projector technique and generalized Bloch theorem approach yield maximally efficient diagonalization of the Hamiltonian of the large symmetrical systems. For the sake of illustration, we perform a case study of the simplified DNA molecule model and solve the energy eigenproblem analytically by using the unit symmetry cell (symcell) and the corresponding low-dimensio...
متن کاملTime-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملCalculation for Energy of (111) Surfaces of Palladium in Tight Binding Model
In this work calculation of energetics of transition metal surfaces is presented. The tight-binding model is employed in order to calculate the energetics. The tight-binding basis set is limited to d orbitals which are valid for elements at the end of transition metals series. In our analysis we concentrated on electronic effects at temperature T=0 K, this means that no entropic term will be pr...
متن کاملTight- binding study of electronic band structure of anisotropic honeycomb lattice
The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...
متن کاملEffect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach
Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...
متن کامل